
ascmhl

American Society of Cinematographers (ASC)

Sep 06, 2022

CONTENTS:

1 ASC Media Hash List (ASC MHL) 3
1.1 ASC MHL Format Specification . 3
1.2 mhllib Reference Implementation . 3
1.3 The ascmhl Tool . 4
1.4 The ascmhl-debug Tool . 4
1.5 Getting started . 4

1.5.1 System requirements . 5
1.5.2 Installing / updating ascmhl as a user . 5
1.5.3 Installing ascmhl as a developer . 5

1.6 Common Scenarios for ascmhl . 5
1.6.1 Working with file hierarchies (with completeness check) 6
1.6.2 Working with single files (without completeness check) . 6

1.7 Commands of ascmhl . 6
1.7.1 The create command . 6
1.7.2 The flatten command . 8
1.7.3 The diff command . 9
1.7.4 The info command . 10

1.8 Commands of ascmhl-debug . 11
1.8.1 The verify command . 11
1.8.2 The xsd-schema-check command . 13
1.8.3 The hash command . 13

1.9 Known issues . 14

2 Commands 15

3 Indices and tables 17

i

ii

ascmhl

This documentation is for the ASC MHL command line tool ascmhl hosted on https://github.com/ascmitc/mhl.

The ASC MHL tool can

• create and extend ASC MHL history for given files and entire file hierarchies in a file system,

• output information about recorded history, and

• verify files and entire file hierarchies.

The “commands” section of this documentation is auto-generated from the Python source code, while the “ASC
Media Hash List (ASC MHL)” section with detailled information is imported from the REAMDE.md of the ghithub
repoistory at https://github.com/ascmitc/mhl.

CONTENTS: 1

https://github.com/ascmitc/mhl
https://github.com/ascmitc/mhl
http://ascmhl.readthedocs.io/?badge=latest
https://github.com/ascmitc/mhl/releases
https://opensource.org/licenses/MIT

ascmhl

2 CONTENTS:

CHAPTER

ONE

ASC MEDIA HASH LIST (ASC MHL)

The software in this repository is the reference implementation for the ASC Media Hash List (ASC MHL)
format specification by the Advanced Data Management Subcommittee of the ASC Motion Imaging Tech-
nology Council (MITC) at the American Society of Cinematographers (ASC).

Resources:

• ASC MHL Specification page (at theasc.com)

In case you are looking for the original specification of MHL, please take a look at https://mediahashlist.
org.

Ensuring file integrity when backing up and verifying files during production and post-production is of utmost impor-
tance. The ASC MHL is used to create a chain of custody by tracking each and every copy made between the media’s
initial download on set, all the way through to final archival.

The ASC MHL uses common checksum methods for hashing files and folders, specifies what information is gathered,
where the checksum is placed, and documents these hashes together with essential file metadata in an XML format
that is human-readable.

This repository holds all information about the document format, a reference implementation, and tools.

1.1 ASC MHL Format Specification

The ASC MHL consists of a

• definition of naming conventions for the ascmhl folder and the file names of its content

• XML schema for the ASC MHL files

• definition for the chain file

The schema definition can be found in the ./xsd folder.

1.2 mhllib Reference Implementation

The implementation of a reference library aims to be used in applications and tools dealing with ASC MHL files. The
library takes responsibility of dealing with complex use cases of nesting and assembling of information.

The reference library covers

• reading ascmhl folders and their contents

• parsing and writing of ASC MHL XML files

• parsing and writing ASC MHL chain and collection files

3

https://theasc.com
https://theasc.com/asc/asc-media-hash-list
https://theasc.com
https://mediahashlist.org
https://mediahashlist.org

ascmhl

• dealing with nested mhl folders

ASC MHL supports the hash formats

• xxHash (64-bit, and latest XXH3 with 64-bit and 128-bit)

• MD5

• SHA1, SHA256

• C4

The source code for mhllib can be found in the ./ascmhl folder.

1.3 The ascmhl Tool

The ascmhl tool is a command line tool based on mhllib that allows to perform typical activities for the use cases
of ASC MHL.

• The createcommand: Create a new generation for a folder or file(s)

• The diffcommand: Diff an entire folder structure

• The flattencommand: Flatten an MHL history into one external manifest

• The infocommand: Prints information from the ASC MHL history

Typical scenarios, sample CLI output, and generated ASC MHL files can be found in the README.md file in the
examples/scenarios folder of the git repository.

The documentation can also be found at https://ascmhl.readthedocs.io/

1.4 The ascmhl-debug Tool

The ascmhl-debug tool is a command line tool with additional operations and commands that might come in handy
during implementation or testing.

• The verifycommand: Verify a folder, single file(s), or a directory hash (without writing a new generation)

• The xsd-schema-checkcommand: Checks a .mhl file against the xsd schema definition

• The hashcommand: Create and print a hash value for a file

1.5 Getting started

The mhllib as well as the ascmhl and ascmhl-degug tools require a few dependencies that need to be installed
first.

For installing system dependencies on macOS Homebrew is recommended.

4 Chapter 1. ASC Media Hash List (ASC MHL)

https://github.com/ascmitc/mhl/blob/master/examples/scenarios/
https://ascmhl.readthedocs.io/
https://brew.sh

ascmhl

1.5.1 System requirements

Make sure you have Python 3 installed:

$ brew install python3
$ brew postinstall python3

1.5.2 Installing / updating ascmhl as a user

Please run the following command to install (or upgrade to) the latest development version of ascmhl:

$ pip3 install --upgrade ascmhl

To verify that it has been correctly installed run:

$ ascmhl --help

1.5.3 Installing ascmhl as a developer

Download the source code and install dependencies using a Virtual Environment:

$ git clone https://github.com/ascmitc/mhl.git
$ cd mhl
$ python3 -m venv env
$ source env/bin/activate
$ pip3 install --editable .

This will install the wrapper scripts ascmhl and ascmhl-debug to be available on your $PATH. Inside the
virtualenv, this wrapper will be installed as env/bin/ascmhl. Regular users might have it in /Library/
Frameworks/Python.framework/Versions/3.9/bin/ascmhl or /usr/local/bin. For Windows
users, pip will create an ascmhl.exe and an ascmhl-debug.exe.

More information on installing Python commandline tools using entry_points can be found here:

• https://setuptools.readthedocs.io/en/latest/userguide/entry_point.html

• https://packaging.python.org/specifications/entry-points/#use-for-scripts

• https://click.palletsprojects.com/en/master/setuptools/

Adding the -e / --editable flag installs a linked version to your site-packages directory to allow editing
the source files in your working directory as usual.

1.6 Common Scenarios for ascmhl

The ascmhl tool can be used to

• verify and create new MHL generations for given files and folders (command create),

• print differences between the records in the MHL history and given files and folders (command diff),

• create one “flattened” manifest file from a history (command flatten), and

• print information about an MHL history (command info).

1.6. Common Scenarios for ascmhl 5

https://docs.python.org/3/tutorial/venv.html

ascmhl

1.6.1 Working with file hierarchies (with completeness check)

The most common commands when using the ascmhl in data management scenarios are the create and the check
commands in their default behavior (without subcommand options).

Creating a new generation for a folder / drive with the create command traverses through a folder hierarchy, hashes
all found files and compares the hashes against the records in the ascmhl folder (if present). The command creates a
new generation (or an initial one) for the content of an entire folder at the given folder level. It can be used to document
all files in a folder or drive with all verified or newly created file hashes of the moment the create command ran.

The diff command also traverses through the content of a folder / drive. The diff command thus behaves like
the verify command, but the diff command does not hash any files (e.g. doesn’t do file verification) and thus is
much faster in execution. It can be used to print all files that are existent in the file system and are not registered in the
ascmhl folder yet, and all files that are registered in the ascmhl folder but that are missing in the file system.

Checking a folder / drive with the verify command (of the ascmhl-debug tool) traverses through the content
of a folder, hashes all found files and compares the hashes against the records in the ascmhl folder. The verify
command behaves like a create command (both without additional options), but doesn’t write new generations. It
can be used to verify the content of a received drive with existing ascmhl information.

1.6.2 Working with single files (without completeness check)

In some scenarios working with an entire folder structure is not adequate, and finer control of the processes files is
needed. For those scenarios the create command is used with additional subcommand options.

Adding single files in a new generation with the create -sf (”single files, no completeness check”) command
allows to add single files to an existing folder structure and create new generations only with records of these files.

The info -sf (”single file”) command prints the known history of a single file with details about all generations.

Hashing and verifying single files against hash information stored in the ascmhl folder with the verify -sf
(”single files”) command (of the ascmhl-debug tool) allows to “check” single files without the need for a (probably
much longer running) check of the integrity of the entire folder structure.

1.7 Commands of ascmhl

Implementation status 2022-09:

• Implemented: create, flatten (partially), diff, info (partially)

1.7.1 The create command

The create command hashes all files given with the different options and creates a new generation in the mhl-history
with records for all hashed files. The command compares the hashes against the hashes stored in previous generations
if available.

6 Chapter 1. ASC Media Hash List (ASC MHL)

ascmhl

create default behavior (for file hierarchy, with completeness check)

The create command traverses through a folder hierarchy (such as a folder with media files, a camera card, or an
entire drive). The command hashes all files (not ignored by the given ignore patterns given with the -i or -ii options)
and the hashes are compared against records in the ascmhl folder. It records all hashed files in the new generation.
Directory hashes are computed and also recorded in the new generation.

The command detects, prints error, and exits with a non-0 exit code if it finds files that are registered in the ascmhl
folder but that are missing in the file system.

Files that are existent in the file system but are not registered in the ascmhl folder yet, are registered as new entries
in the newly created generation(s).

The create command takes the root path of the file hierarchy as the parameter:

$ ascmhl create [-i ignore pattern|-ii /path/to/ignore-file.txt] [creator-info
→˓options] /path/to/folder/

Creator-info options:

• --location: Location value of the <creatorinfo>element.

• --comment: Comment value of the <creatorinfo>element.

• --author_name: Name value of the <author> element in the <creatorinfo>element.

• --author_email: Email value of the <author> element in the <creatorinfo>element
(--author_name must also be set for this option).

• --author_phone: Phone value of the <author> element in the <creatorinfo>element
(--author_name must also be set for this option).

• --author_role: Role value of the <author> element in the <creatorinfo>element
(--author_name must also be set for this option).

It works on folders with or without an ascmhl folder within the given folder hierarchy, and creates a new ascmhl
folder at the given folder level if none is present before.

ascmhl folders further down the file hierarchy are read, handled, and referenced in top-level ascmhl folders. Exist-
ing ascmhl folders further down the folder structure will also get a new generation added.

Implementation:

read (recursive) mhl history (mhllib)
traverse folder

hash each file
if `ascmhl` folder exists, compare hash (mhllib)
on error (including mismatching hashes):

print error
continue

add files to new generation if not present yet
compare found files in file system with records in ascmhl folder and \

warn if files are missing that are recorded in the ascmhl folder
create new generation(s) (mhllib)

1.7. Commands of ascmhl 7

ascmhl

create with -sf option(s) (for single file(s), no completeness check)

The create command with -sf option is run with the root path of the file hierarchy as well as one or multiple paths
to the individual files to be recorded as the parameters.

This command can be used for instance when adding single files to an already mhl-managed file hierarchy.

$ ascmhl create /path/to/root/folder -sf /path/to/single/file1 [-sf /path/to/single/
→˓file2 ..]

A new generation is created in all ascmhl folders below the given root path (e.g. in a nested mhl-history). If no
mhl-history is present yet, an error is thrown.

No other files than the ones specified as -sf options are handled by this command.

Implementation:

read (recursive) mhl-history (mhllib) starting from root path
for each file from input

check if file is not recorded in `ascmhl` folder yet
hash file
add record for file to new generation (mhllib)

add a new generation if necessary in appropriate `ascmhl` folder
→˓(mhllib)

1.7.2 The flatten command

The flatten command takes the root path of the file hierarchy and the destination path for the flattened manifest as
the parameter:

$ ascmhl flatten [-i ignore pattern|-ii /path/to/ignore-file.txt] [creator-info
→˓options] /path/to/folder/ /destination/path/

Creator-info options:

• --location: Location value of the <creatorinfo>element.

• --comment: Comment value of the <creatorinfo>element.

• --author_name: Name value of the <author> element in the <creatorinfo>element.

• --author_email: Email value of the <author> element in the <creatorinfo>element
(--author_name must also be set for this option).

• --author_phone: Phone value of the <author> element in the <creatorinfo>element
(--author_name must also be set for this option).

• --author_role: Role value of the <author> element in the <creatorinfo>element
(--author_name must also be set for this option).

TBD

% ascmhl flatten --help
Usage: ascmhl flatten [OPTIONS] ROOT_PATH DESTINATION_PATH

Flatten an MHL history into one external manifest

The flatten command iterates through the mhl-history, collects all known files and
their hashes in multiple hash formats and writes them to a new mhl file outside of

→˓the
(continues on next page)

8 Chapter 1. ASC Media Hash List (ASC MHL)

ascmhl

(continued from previous page)

iterated history.

Options:
-v, --verbose Verbose output
-n, --no_directory_hashes Skip creation of directory hashes, only reference

directories without hash
-i, --ignore TEXT A single file pattern to ignore.
-ii, --ignore_spec PATH A file containing multiple file patterns to

ignore.
--author_name TEXT Name value for the <author> element in the

<creatorinfo> element
--author_email TEXT Email value for the <author> element in the

<creatorinfo> element
--author_phone TEXT Phone value for the <author> element in the

<creatorinfo> element
--author_role TEXT Role value for the <author> element in the

<creatorinfo> element
--location TEXT Value for the <location> element in the

<creatorinfo> element
--comment TEXT Value for the <comment> element in the

<creatorinfo> element
--help Show this message and exit.

1.7.3 The diff command

The diff command is very similar to the verify command in the default behavior, only that it doesn’t create hashes
and doesn’t verify them. It can be used to quickly check if a folder structure has new files that have not been recorded
yet, or if files are missing.

The command detects, prints errors, and exits with a non-0 exit code for

• all files that existent in the file system but not registered in the ascmhl folder yet, and

• all files that are registered in the ascmhl folder but that are missing in the file system.

It is run with the root path of the file hierarchy as the parameter.

$ ascmhl diff /path/to/folder/

If no ascmhl folder is found on the root level, an error is thrown.

ascmhl folders are read recursively.

Implementation:

error if no mhl folder found on root level
read (recursive) mhl history (mhllib)
traverse folder

on missing file:
print error
continue

compare found files in file system with records in ascmhl folder \
and warn if files are missing that are recorded in the ascmhl folder

end with exit !=0 if at least one of the files has failed, a file was \
missing, or new files have been found

1.7. Commands of ascmhl 9

ascmhl

1.7.4 The info command

info default behavior

The ascmhl folder contains well readable XML files, but the number of recorded files, generations, hash entries,
verification info and so forth adds up to an amount of information that cannot be quickly understood. The info
command helps to get a quick overview of the contents of the stored information in an ascmhl folder.

The info command prints

• a list of generations (with the -v option also with creator info and process info)

• [not implemented yet] a summary (with the -s subcommand option) of the information in an ascmhl folder,
such as

• number of recorded files, and a list of the generations with their creator info, and/or

• [not implemented yet] a list (with the -l option) of all file (and folder) records stored in an ascmhl folder,

• together with relative file paths, file size, and known file hashes.

It is run with the path to a specific ascmhl folder as the parameter.

$ ascmhl info [-s|-l] [-v] /path/to/ascmhl/

Implementation:

error if no mhl folder found on root level
read (recursive) mhl history (mhllib)
if summary option:

print summary
if list option:

for each file record
print file info, hashes, etc.

info with the -sf subcommand option

The info command with the -sf subcommand option outputs information about the full and detailed history infor-
mation about one file.

$ ascmhl info -sf /path/to/file [-sf /path/to/other/file] [/root/path]

The command outputs each generation where the file has been handled, including date, hash, and activity (and creator
info and absolute path with the -v option). The history information is read from the “next” ASC MHL history found
in the path, of at the given root path.

Implementation:

find mhl-history information in the path above (mhllib)
error of no `ascmhl` folder is found

print detailed info for file

10 Chapter 1. ASC Media Hash List (ASC MHL)

ascmhl

info with the -dh subcommand option [not implemented yet]

The info command with the -dh subcommand option prints

• the directory hash of a folder computed from stored file hashes of an ascmhl folder (with the -dh option).

The directory hash can be used to quickly verify if the state of a folder structure is still the same compared to the last
generation created with a create command (manually compare with the hash in the <root> tag in the ASC MHL
file).

It is run with the path to a specific ascmhlfolder and the path to the desired folder for the computed directory hash.

$ ascmhl info -dh /path/to/ascmhl/ /path/to/sub/folder

Implementation:

error if no mhl folder found on root level
read (recursive) mhl history (mhllib)
calculate directory hash from file hashes
print directory hash

1.8 Commands of ascmhl-debug

1.8.1 The verify command

verify default behavior (for file hierarchy, with completeness check)

The verify command traverses through the content of a folder, hashes all found files (filtered by the ignore patterns
from the ascmhl folder) and compares the hashes against the records in the ascmhl folder.

The command detects, prints errors, and exits with a non-0 exit code for

• all files that are existent in the file system but are not registered in the ascmhl folder yet, and

• all files that are registered in the ascmhl folder but that are missing in the file system.

It is run with the root path of the file hierarchy as the parameter.

$ ascmhl verify /path/to/folder/

If no ascmhl folder is found on the root level, an error is thrown.

ascmhl folders further down the file hierarchy are also read, and its recorded hashes are used for verification.

Implementation:

error if no mhl folder found on root level
read (recursive) mhl history (mhllib)
traverse folder

hash each file (filtered by ignore patterns from mhl folder)
compare hash (mhllib)
on error (including mismatching hashes):

print error
continue

compare found files in file system with records in ascmhl folder and \
warn if files are missing that are recorded in the ascmhl folder

end with exit !=0 if at least one of the files has failed, a file was \
missing, or new files have been found

1.8. Commands of ascmhl-debug 11

ascmhl

verify with -sf option (for single file, no completeness check)

The verify command can be used to verify a single file. It is run with the path to a single file as the parameter.

The path can be

• the relative path to the file starting from the root folder of the history, or

• the absolute path to the file.

$ ascmhl verify -sf /absolute/path/to/single/file
$ ascmhl verify -sf realtive/path/to/single/file

The command looks for an ascmhl folder in the folders above the given files. If no mhl-history is present yet, an
error is thrown.

Implementation:

find mhl-history information in the path above (mhllib)
error of no `ascmhl` folder is found

read (recursive) mhl-history (mhllib)
for file from input

hash file
compare hash (mhllib)

if file is not found in mhl-history, throw error
on error (including mismatching hashes):

don't break
print error
end with exit !=0 if the verification has failed

verify with -dh subcommand option (for directory hash)

The verify command with the -dh subcommand (or --directory_hash) option creates the directory hash
by hashing the contained files of the given directory path (filtered by the ignore patterns from the ascmhl folder)
and compares it with the to-be-expected directory hash calculated from the file hashes (same calculation as the info
command with the -dh subcommand option).

$ ascmhl verify -dh [-co [-ro]] /path/to/folder

The -co option (or --calculate_only) only calculates and prints the directory hashes and doesn’t verify them
against an existing history. This option also works when no history is present. The -ro option (or --root_only)
only calculates and prints the root directory hash. This option is only in effect with the -co option.

Implementation:

find mhl-history information in the path above (mhllib)
error of no `ascmhl` folder is found

read (recursive) mhl history (mhllib)
calculate to-be-expected directory hash from file hashes
traverse folder

hash each file
calculate actual directory hash
compare to-be-expected directory hash with actual directory hash
on error (including mismatching hash):

print error
end with exit !=0

12 Chapter 1. ASC Media Hash List (ASC MHL)

ascmhl

verify with -pl subcommand option (for packing lists)

The verify command with the -pl subcommand (or --packing_list) option can be used to verify a folder
structure with a given packing list.

It is run with the path to the packing list manifest file as the parameter.

$ ascmhl verify -pl /path/to/packing-list.mhl

TBD

1.8.2 The xsd-schema-check command

The xsd-schema-check command validates a given ASC MHL Manifest file against the XML XSD. This com-
mand can be used to ensure the creation of syntactically valid ASC MHL files, for example during implementation of
tools creating ASC MHL files.

Note: The xsd-schema-check command must be run from a directory with a xsd subfolder where the ASC MHL
xsd files are located (for example it can be run from the root folder of the ASC MHL git repository). Alternatively you
can pass the local path to the XSD file (available here) with the -xsd or --xsd_file option.

$ ascmhl xsd-schema-check /path/to/ascmhl/XXXXX.mhl

xsd-schema-check with the -df subcommand option

The xsd-schema-check command with the -df subcommand option can validates a ASC MHL Directory file
instead of a manifest file.

It is run with the path to a ASC MHL Directory file.

$ ascmhl xsd-schema-check -df /path/to/ascmhl/ascmhl_chain.xml

1.8.3 The hash command

The hash command hashes an individual file with the given hash algorithm (via -h or --hash_format) and prints
the hash value.

$ ascmhl-debug hash --help
Usage: ascmhl-debug hash [OPTIONS] FILE_PATH

Create and print a hash value for a file

Options:
-h, --hash_format [md5|sha1|xxh128|xxh3|xxh64|c4]

Algorithm [required]
--help Show this message and exit.

1.8. Commands of ascmhl-debug 13

https://raw.githubusercontent.com/ascmitc/mhl/master/xsd/ASCMHL.xsd

ascmhl

1.9 Known issues

The current state of the implementation is intended to give a good overview what can be done with ASC MHL.
Nonetheless this is not yet a complete implementation of the ASC MHL specification:

• Currently not all initially specified commands are implemented yet (see sections above)

• Renaming of files is currently not implemented (neither as command, nor proper handling in histories and
packing

• lists)

• The chain file is currently not verified yet

Also see the GitHub issues page for more.

14 Chapter 1. ASC Media Hash List (ASC MHL)

https://github.com/ascmitc/mhl/issues

CHAPTER

TWO

COMMANDS

15

ascmhl

16 Chapter 2. Commands

CHAPTER

THREE

INDICES AND TABLES

• genindex

• search

This documentation is created automatically from https://github.com/ascmitc/mhl.

17

https://github.com/ascmitc/mhl

	ASC Media Hash List (ASC MHL)
	ASC MHL Format Specification
	mhllib Reference Implementation
	The ascmhl Tool
	The ascmhl-debug Tool
	Getting started
	System requirements
	Installing / updating ascmhl as a user
	Installing ascmhl as a developer

	Common Scenarios for ascmhl
	Working with file hierarchies (with completeness check)
	Working with single files (without completeness check)

	Commands of ascmhl
	The create command
	The flatten command
	The diff command
	The info command

	Commands of ascmhl-debug
	The verify command
	The xsd-schema-check command
	The hash command

	Known issues

	Commands
	Indices and tables

